一、高压大型异步电动机启动压降的计算(论文文献综述)
段梦菲,杨嘉城[1](2021)在《电动机启动压降精确计算及比较》文中研究指明以《工业与民用供配电设计手册》第四版电动机启动压降计算公式作为切入点,引出相对精确的电动机启动压降计算公式。通过多种计算方法比较,发现由于手册中给出的计算公式过度简化,所算得的结果与精准计算、仿真结果相差2%左右。这偏差对于有较高计算精准度要求的设计选型是不利的。因此通过比较,引出较为精准的计算方法,以代替手册中给出的电动机启动压降计算公式。
练炤懿[2](2020)在《泵站异步电动机启动压降计算及启动方式》文中提出异步电动机是生产企业重要的设备,其是否正常运行以及精确地做到升降直接影响到企业的正常生产,因此对异步电动机启动压降的计算显得很有必要。结合工程实例,主要介绍了泵站异步电动机的启动特性,深入分析了启动电压降工况计算和实施方法,并对异步电动机的启动方式进行重点介绍,同时提出了完全符合农村泵站水泵机组电动机的启动模式。
周逸波[3](2020)在《泵站10kV异步电动机启动压降计算及启动方式分析》文中认为以白茆塘枢纽工程为例,对泵站10kV异步电动机启动压降的计算方法进行了梳理,明确计算条件,并根据计算结果对水泵电机启动方式进行分析,说明了软启动器在泵站工程中应用的优势。
王兴武[4](2020)在《斩波串级调速系统稳态特性分析及系统综合优化研究》文中研究表明高压大功率电机的节能调速具有重要的国民经济意义。斩波串级调速是高压大功率电机调速的一种高效方式,在工业现场有着广泛应用。串级调速设备从电机转子侧接入,把定子侧的高压调速转化为转子侧的低压调速,并且只需控制远小于电机额定功率的转差功率,具有控制电压低、控制功率小、结构简单、自身损耗低、运行环境要求低等优点。所以,斩波串级调速系统在高压大功率电机调速方面具有独特的优势。目前对斩波串级调速系统的研究主要侧重于理论研究、参数计算和仿真建模,与工程应用结合很少。由于缺乏对系统稳态性能及综合优化、设备器件特性及功率单元结构等方面的研究,造成长期以来斩波串级调速系统的可靠性得不到保证。论文首次针对上述问题对斩波串级调速系统进行深入研究和分析,并结合工程实践确认研究结果的正确性,主要开展了以下研究工作:1.根据异步电机的基本方程和等效电路,基于异步电机出厂时的铭牌数据,建立了用于计算异步电机等效电路参数的计算公式,通过实例计算,提供不同功率电机等效参数的取值范围,为绕线电机等效参数的计算提供理论依据和工程数据参考;通过建立精确的电机等效电路和等效电路参数辨识优化模型,将非线性方程求解问题转化为优化问题,得到基于铭牌数据结合PSO优化算法的异步电机参数辨识方法,提高了调速工况下电机等效参数的计算精度。2.分析斩波串级调速系统三种稳态状态下主回路器件及功率单元的工作状态,设计控制逻辑实现了调速稳态之间的平稳转换,为斩波串级调速系统的稳态转换控制提供设计原则。根据主回路等效电路,建立调速稳态时的主回路数学模型,得出斩波串级调速主回路各主要电气参数之间的函数关系,以及主要电气参数的纹波公式,为斩波串级调速系统的主回路稳态分析提供理论依据。基于主回路稳态分析,对大功率斩波单元的器件并联拓扑结构、并联IGBT同步、低感叠层母排等问题进行优化研究,首次提出了大功率斩波单元优化方案,并在国内最大功率(5400kW)串级调速项目中完成验证,解决了斩波串级调速系统在大功率电机应用的关键问题。3.对斩波电抗器损耗进行深入研究,根据铁芯损耗理论和电抗器工作电流特性分析,建立基于修正Steinmetz经验公式的斩波电抗器铁芯损耗数学模型,在大功率模拟带载试验平台上完成验证,为斩波电抗器的设计和选型提供了理论依据和工程方法。4.基于稳态分析及各参数与调速系统性能的直接相关程度,识别调速系统的四个主要性能参数以及影响调速系统性能的五个关键参数;系统地分析了关键参数对调速系统性能的影响,并从调速系统全局出发,提出系统综合优化方案,实现了调速系统在调速性能、可靠性和经济性三方面的综合最优,为斩波调速系统的设计提供了综合优化方法和实际应用方案。5.对斩波串级调速系统的功率因数进行研究,分析斩波串级调速系统功率因数偏低的原因,据此提出低压一体化无功补偿方案;针对在低压侧无功补偿投切时出现逆变颠覆的实际问题,进行机理分析并提出解决方案;基于减小转子侧谐波以提高功率因数的原理,提出了整流单元电容吸收的改进方案。
刘森,张书维,侯玉洁[5](2020)在《3D打印技术专业“三教”改革探索》文中指出根据国家对职业教育深化改革的最新要求,解读当前"三教"改革对于职教教育紧迫性和必要性,本文以3D打印技术专业为切入点,深层次分析3D打印技术专业在教师、教材、教法("三教")改革时所面临的实际问题,并对"三教"改革的一些具体方案可行性和实际效果进行了探讨。
倪方雷[6](2020)在《转子有轴向通风孔的高压电动机电磁性能分析》文中提出转子轭部采用开设轴向通风孔的方案可以有效地提高电机的通风散热能力,目前关于轴向通风孔对电机温升研究较多而对于电磁性能研究还不够完善。本文采用理论计算与有限元分析相结合的方式对转子轭部有轴向通风孔展开电磁分析,提升电磁性能计算准确性。以一台YXKK355-4、400k W的紧凑中型高压异步电动机为研究对象,根据电机主要参数以及厂家提供的转子轭部轴向通风孔尺寸,建立转子轭部开孔前后电机二维有限元模型。通过有限元仿真对比分析转子轭部开孔前后电机定转子齿部与轭部以及气隙磁场的变化情况,分析出转子轴向通风孔对电机电磁性能影响,同时提升转子轭部开孔电机的电磁计算准确性。为了完善分析转子轭部轴向通风孔对电机电磁性能影响,对不同开孔方案进行磁场分析,得出转子轭部不同开孔方案对转子齿部与轭部的磁场影响规律以及气隙系数的变化规律,对于修正现行算法提高转子有轴向通风孔电机的电磁计算准确性具有一定的参考价值。原有的开孔散热方案引起电机功率因数和效率下降较多,因此本文本在保障电机通风散热能力基本不变的情况下,通过大量分析仿真认证对轴向通风孔的开孔位置,个数以及大小提出改进,得到通风孔改进后电机相比于原有开孔方案电磁性能得到提高,保障了电机稳定性与可靠性,延长了电机寿命为中型高压异步电动机开设轴向通风孔提供更多的理论支撑。
马天银[7](2020)在《Matlab环境下交流机车变频调速过程仿真》文中提出列车牵引交流传动控制系统作为电气传动控制的一个独立分支,在交通运输牵引传动领域有着举足轻重的地位。它是一个非线性、变量多和强耦合的系统,能量传递通过变流器完成交-直-交的转换,将转换后的交流电传输到异步电动机中完成传动。整个过程它以牵引电动机为控制对象,通过开环或者闭环控制系统对牵引电动机转速参数的实时控制,来达到对驱动对象控制与调节的目的。实际传动系统的构建相当细致与复杂,并且影响运行稳定的因素众多,其中系统运行过程中产生的谐波对系统的稳定性影响比较严重,这些谐波主要来源是IGBT开关元件工作时导致的尖峰电压所产生。为了使系统运行的稳定性有所提高,本文针对谐波这一问题,主要开展了Matlab环境下交流机车变频调速过程仿真分析并做系统改进的工作,主要包括:研究了列车牵引交流系统运行的基本原理,了解其运行过程中会产生谐波的主要原因,然后在Matlab/simulink平台上搭建传动系统的仿真模型,完成仿真并分析结果;研究了滤波电路的相关原理,针对谐波问题对仿真电路进行改进,改进方案是在逆变器输出端的电路中加入设计的三相滤波器电路,并对改进后的模型进行仿真,再根据仿真实验结果与改进前的仿真结果进行对比分析。研究结果表明,在牵引传动系统中,变流器在完成交-直-交的能量转换时,由IGBT元件关断产生的谐波对系统运行的稳定性有明显影响,表现在异步电机的输出相电流与转矩的波形出现不稳定情况,说明系统的稳定性受谐波影响明显;系统中搭建的闭环反馈控制系统的仿真结果表明,可以通过将异步电机的转速作为反馈信号,进行一系列的转化输入到逆变器中完成反馈控制,反馈效果显着,达到实验预期。针对谐波问题的验证,在仿真系统中加入本文提出的改进方案,在变流器输出端加入设计好的三相滤波电路。对改进后的系统仿真进行调试运行,将改进前后的仿真结果对比发现,异步电机的输出转矩与电流的波形图变得相对稳定,说明与预设情况一致,系统运行的不稳定就是谐波问题导致,此方案提出合理,符合预设情况。因此提出的设计就有了理论支撑,并对实际有一定的理论指导意义,进而说明此方案对谐波问题可以得到很好的改善。
黄文聪[8](2020)在《电力电子磁控电抗器及其合闸涌流抑制研究》文中研究表明电力电子磁控电抗器是实现高压大功率电动机软起动的核心部件,在轨道交通、港口码头、隧道、船舶等交通运输领域以及其他工业领域发挥着越来越重要的作用。深入研究电力电子磁控电抗器及其合闸涌流抑制,是高压大功率电动机顺利起动、电力系统稳定运行、延长电力电子电抗器使用寿命的基础,具有重要的理论及实际工程意义。本文以解决高压大功率电动机起动引起的过电流问题为出发点,着眼于电力电子磁控电抗器软起动系统的整体性能优化,针对电力电子磁控电抗器相关科学问题,展开数学建模方法、合闸涌流抑制方法、本体设计方法及多物理场耦合的研究。本文完成的主要工作和取得的研究结果如下:(1)针对传统磁控电抗器受电力电子器件耐压限制,不适合于高压大功率电动机软起动的问题,采用融合、创新思路,提出了高压大功率电动机软起动用磁控电抗器的拓扑结构;设计了单绕组和多绕组磁控电抗器的拓扑结构并分析了两者的工作原理,阐明了两者工作原理和电抗变换的一致性。建立了IGBT式和晶闸管式磁控电抗器的数学模型,并对其阻抗变换机理进行了分析。针对电力电子磁控电抗器数学建模依赖于二次绕组侧电力电子阻抗变换电路,且阻抗变换机理分析存在理论推导复杂和计算冗长的问题,提出了一种磁控电抗变换器建模方法,构建了电力电子磁控电抗变换器通用数学模型,揭示了通过控制电力电子磁控电抗变换器二次绕组的电流可以实现一次绕组阻抗值连续平滑调节的阻抗变换机理。研究结果为涌流抑制方法研究、电力电子磁控电抗器本体设计及多物理场耦合分析奠定了基础。(2)针对电力电子磁控电抗器合闸接入电网产生的严重涌流问题,提出了空载工作状态和带负载工作状态下不同的涌流抑制方法。当电力电子磁控电抗器空载接入电网时,针对传统的合闸电阻法需要增加额外的合闸电阻问题,提出了控制电力电子磁控电抗器合闸角的方法来抑制涌流,研究了电抗器合闸接入电网的相位角控制规律;当电力电子磁控电抗器带负载接入电网时,针对控制合闸相位角不能实现偏磁与剩磁相抵消的问题,提出了无功功率动态补偿策略来抑制合闸涌流,研究了无功功率补偿量计算方法和动态补偿方法。分别建立了空载合闸和带负载合闸的仿真模型,验证了合闸涌流抑制方法的有效性,涌流均被抑制在电力电子磁控电抗器额定电流的2倍以内,涌流抑制效果明显。(3)针对传统电抗器设计多采用经验法,手工计算较为复杂的问题,提出了一套电力电子磁控电抗器本体设计方法,包括铁芯结构设计方法、绕组设计方法、主电抗计算方法、漏电抗计算方法等,开发了计算机辅助设计软件。针对电力电子磁控电抗器在合闸运行状态下产生的振动、噪声和温升问题,提出合闸涌流抑制可以有效减小振动、噪声和温升。采用有限元仿真软件COMSOL构建了电力电子磁控电抗器电磁模型、结构力学模型、声学模型和三维流场-温度场耦合模型,进行了多物理场耦合分析,对比了合闸涌流抑制前后铁芯磁通密度、铁芯等效应力、铁芯形变、声压级以及温升的变化情况,仿真结果证明,采用涌流抑制方法可以将电力电子磁控电抗器的噪声抑制在66d B以内,其温升不超过54K,满足A级电力设备的相关国家标准。(4)构建了电力电子磁控电抗器软起动系统试验平台,将成功研制的20000k W/10k V电力电子磁控电抗器应用于某钢厂19000k W/10k V高压大功率电动机的软起动中,并进行了挂网试验。试验结果表明,电力电子磁控电抗器带高压大功率电动机接入电网,起动电流小于电动机额定电流的2倍,电网电压压降小于5%,电力电子磁控电抗器具有优秀的连续电抗调节特性,可以有效地抑制高压大功率电动机这类冲击负荷接入电网引起的过电流现象,起动过程无涌流,起动电流曲线平滑,起动性能良好。本文完成了电力电子磁控电抗器及其合闸涌流抑制的研究,在理论研究、计算机辅助设计、计算机仿真和试验平台构建方面进行了有益的探索,为电力电子磁控电抗器的研制以及基于电力电子磁控电抗器的软起动系统的开发及应用奠定了一定的理论和技术基础。
吴睿雅[9](2020)在《MMA装置和SAR装置变电所供配电及综合自动化系统设计》文中研究指明MMA装置和SAR装置属于石油化工企业生产装置,其生产环境属于爆炸危险区域,工艺装置之间联系紧密,稍有不慎可能会打乱其中关键的生产环节,造成经济损失。因此,该生产装置变电所的设计是在进行整个装置工程设计中的一个重要环节,关系到整个生产装置的平稳、安全、可靠运行,同样关系到国民经济的稳定发展。本文根据MMA装置和SAR装置的特点,使该装置变电所内的供配电设计保障了供电系统的连续性、灵活性、安全性;综合自动化系统设计实现了该装置变电所的无人值守,而无人值守取决于综合自动化系统的可靠性,随后本文选取了合适的分析方法,对已设计出的综合自动化系统进行了可靠性分析。本文针对这两套装置设计的变电所供配电及综合自动化系统对于降低人工成本、减少人为误操作、保障人员安全,实现工业自动化具有重要意义。本文的目标是针对MMA和SAR生产装置的特点,设计出一套供电连续性好、自动化可靠性高、能实现无人值守的装置变电所,并应用于工程实践,其主要研究内容和创新点如下:1.针对MMA装置和SAR装置的特点,对为这两套装置供电的装置变电所提出了一个供配电设计流程和方法。2.结合上级区域变电所提供的数据、电源条件以及MMA装置和SAR装置的用电负荷条件,对已提出的供配电设计流程和方法进行相应的分析和计算,根据计算结果对主要的一次电气设备进行了选择,并对一次设备进行了验证。3.针对已设计出的变电所供配电一次系统,提出了对变电所的二次系统进行功能整合的方法,并能使上级区域变电所对本级变电所进行监控和管理,实现本级变电所的无人值守。4.针对已设计出的综合自动化系统,选取合适的分析方法,对该系统冗余结构和非冗余结构这两种情况下相同顶事件发生的概率进行比较,通过理论分析证明在实现该变电所无人值守的同时,变电所内的综合自动化系统采用冗余结构的重要性。本文研究和设计的供配电系统和综合自动化系统,符合本项目生产装置所需、符合国家标准、规范等要求,自二零一九年九月份开车以来,供配电系统运行良好,综合自动化系统反映的供配电系统数据和画面显示准确,自动化系统故障率低,在石油化工企业类似项目中具有代表性,体现出实际应用价值。
成倩[10](2020)在《基于浮动核电站海上新能源综合电力系统的研究》文中研究表明能源问题在国际上一直被密切关注,很多国家都对能源的开发利用方面进行了探索研究。在陆上核电站技术已经成熟完善之际,科学家们的目光投向了广阔的海洋,海上浮动核电站为海洋资源进行充分的挖掘利用提供了便利,克服远海能源供给的问题,为大型工业项目、沿岸城镇、海洋油气平台、岛礁开发提供电力。从保护和节约传统能源的角度出发,太阳能和风能等可再生能源被人们重点关注。将可再生能源与浮动核电站相结合充分利用了绿色能源,既可以增加发电功率,实现节能减排,新能源发电系统也可以作为浮动核电站的辅助应急电源,使得浮动核电站更加安全。本文首先叙述了选题的背景及意义,对国内外浮动核电站和新能源发电技术的研究及发展现状进行了归纳总结,分析了基于浮动核电站海上新能源发电系统的优势与可行性。其次,研究了基于浮动核电站海上新能源综合电力系统的各组成部分的工作原理以及数学模型,包括汽轮发电机组、光伏发电系统、风力发电系统、蓄电池以及应急柴油发电机组,其中光伏发电系统包括光伏电池、最大功率跟踪控制和并网环节,风力发电系统包括风速、双馈风力发电机和双PWM变换器。然后在PSCAD软件中建立其仿真模型,验证了各模型的正确性。然后,搭建了系统的整体模型,对新能源发电系统并入浮动核电站和新能源发电系统与浮动核电站同时运行时负荷变化的情况进行了仿真,分析了系统的暂态稳定性,结果表明系统稳定性能良好。然后研究新能源发电系统作为浮动核电站补充应急电源的情况,并分析了这种情况下需要解决的问题。最后,分析了应急柴油发电机组对于浮动核电站的重要性,并根据实际的负荷加载程序研究了机组容量的计算与校核的方法,建立了应急柴油发电机加载仿真模型进行仿真验证。结果表明加载过程中的性能指标满足要求,选取容量合理。
二、高压大型异步电动机启动压降的计算(论文开题报告)
(1)论文研究背景及目的
此处内容要求:
首先简单简介论文所研究问题的基本概念和背景,再而简单明了地指出论文所要研究解决的具体问题,并提出你的论文准备的观点或解决方法。
写法范例:
本文主要提出一款精简64位RISC处理器存储管理单元结构并详细分析其设计过程。在该MMU结构中,TLB采用叁个分离的TLB,TLB采用基于内容查找的相联存储器并行查找,支持粗粒度为64KB和细粒度为4KB两种页面大小,采用多级分层页表结构映射地址空间,并详细论述了四级页表转换过程,TLB结构组织等。该MMU结构将作为该处理器存储系统实现的一个重要组成部分。
(2)本文研究方法
调查法:该方法是有目的、有系统的搜集有关研究对象的具体信息。
观察法:用自己的感官和辅助工具直接观察研究对象从而得到有关信息。
实验法:通过主支变革、控制研究对象来发现与确认事物间的因果关系。
文献研究法:通过调查文献来获得资料,从而全面的、正确的了解掌握研究方法。
实证研究法:依据现有的科学理论和实践的需要提出设计。
定性分析法:对研究对象进行“质”的方面的研究,这个方法需要计算的数据较少。
定量分析法:通过具体的数字,使人们对研究对象的认识进一步精确化。
跨学科研究法:运用多学科的理论、方法和成果从整体上对某一课题进行研究。
功能分析法:这是社会科学用来分析社会现象的一种方法,从某一功能出发研究多个方面的影响。
模拟法:通过创设一个与原型相似的模型来间接研究原型某种特性的一种形容方法。
三、高压大型异步电动机启动压降的计算(论文提纲范文)
(1)电动机启动压降精确计算及比较(论文提纲范文)
0 引言 |
1 电压降落、电压损耗与电压偏移 |
2 手册中关于电机启动电暂降的计算 |
2.1 基准电压取值不统一 |
2.2 电阻计及前后不一致 |
3 标幺制阻抗分压法 |
4 潮流迭代法 |
5 计算示例 |
5.1 手册第四版的电机启动电压降落计算(电机电缆阻抗为查表所得) |
5.2 手册第四版的电机启动电压降落计算(电机电缆阻抗为公式估算值) |
5.3 标幺制阻抗分压法 |
5.4 潮流迭代法 |
5.5 ETAP仿真计算 |
5.6 计算结果比较 |
6 结束语 |
(2)泵站异步电动机启动压降计算及启动方式(论文提纲范文)
0 引言 |
1 选择电动机 |
1.1 选择压和额定容量 |
1.2 电动机型选择 |
2 启动方式选择 |
2.1 全压启动 |
2.2 降压启动 |
2.2.1 角形措施 |
2.2.2 自耦变压器降压启动 |
2.2.3 软启动 |
3 启动计算 |
3.1 启动计算的工况 |
3.2 启动计算 |
3.2.1 异步电动机起动时变电站母线电压 |
3.2.2 异步电动机起动时电排站母线电压 |
3.2.3 线路电压损失 |
3.2.4 不同的电动机启动 |
4 结论 |
(3)泵站10kV异步电动机启动压降计算及启动方式分析(论文提纲范文)
1 工程概况 |
2 210kV异步电动机启动压降计算 |
2.1 计算条件 |
2.2 110kV东郊变供电时泵站10kV母线压降计算 |
2.3 110kV藕渠变供电时泵站10kV母线压降计算 |
3 10kV异步电动机启动方式选择 |
4 结语 |
(4)斩波串级调速系统稳态特性分析及系统综合优化研究(论文提纲范文)
摘要 |
ABSTRACT |
第1章 绪论 |
1.1 选题背景和意义 |
1.2 斩波串级调速技术研究现状 |
1.2.1 斩波串级调速技术 |
1.2.2 国内外研究现状 |
1.3 目前存在的问题 |
1.4 课题研究意义及主要内容 |
1.4.1 课题研究意义 |
1.4.2 课题主要研究内容 |
1.4.3 课题创新点 |
第2章 斩波串级调速系统原理及电机特性分析 |
2.1 斩波串级调速系统的工作原理 |
2.2 基于铭牌数据的电机参数辨识 |
2.2.1 异步电机的等效电路和基本方程 |
2.2.2 异步电机参数计算的公式法 |
2.2.3 基于铭牌数据结合PSO的电机参数辨识 |
2.2.4 电机等效电路参数分析 |
2.3 斩波串级调速系统的机械特性及脉动转矩 |
2.3.1 斩波串级调速系统的机械特性 |
2.3.2 斩波串级调速系统的脉动转矩 |
2.4 本章小结 |
第3章 调速系统主回路稳态分析及优化 |
3.1 主回路拓扑结构及系统状态 |
3.1.1 主回路拓扑结构 |
3.1.2 系统稳态状态及相互转换 |
3.2 调速稳态时的主回路数学模型 |
3.2.1 基于电路分析的稳态数学模型 |
3.2.2 主要电气参数的纹波分析 |
3.2.3 基于能量平衡的数学模型 |
3.2.4 仿真与现场试验验证 |
3.3 大功率斩波单元优化 |
3.3.1 器件并联拓扑结构方案 |
3.3.2 并联IGBT的同步分析 |
3.3.3 低感斩波叠层母排设计 |
3.4 本章小结 |
第4章 关键参数对系统性能的影响与系统综合优化 |
4.1 调速系统的主要器件及关键参数 |
4.1.1 主要器件及其参数 |
4.1.2 系统关键参数分析 |
4.2 主要器件参数特性分析 |
4.2.1 电压电流参数分析 |
4.2.2 电感电容参数分析 |
4.2.3 功率器件损耗分析 |
4.3 斩波电抗器损耗分析 |
4.3.1 铁芯损耗理论模型 |
4.3.2 斩波电抗器的铁芯损耗模型 |
4.3.3 斩波电抗器的铁芯损耗试验 |
4.3.4 试验结果小结 |
4.4 关键参数对系统性能的影响分析 |
4.4.1 反馈电压对系统性能的影响分析 |
4.4.2 斩波频率对系统性能的影响分析 |
4.4.3 器件参数对系统性能的影响分析 |
4.5 系统综合优化方案 |
4.6 本章小结 |
第5章 斩波串级调速系统的无功补偿优化 |
5.1 调速系统的功率因数分析 |
5.2 无功补偿方案 |
5.3 无功补偿优化 |
5.3.1 低压一体化无功补偿优化 |
5.3.2 整流桥阻容吸收电路优化 |
5.4 本章小结 |
第6章 结论与展望 |
6.1 全文总结 |
6.2 主要创新点 |
6.3 展望 |
参考文献 |
攻读博士学位期间发表的论文及其它成果 |
攻读博士学位期间参加的科研工作 |
致谢 |
作者简介 |
(5)3D打印技术专业“三教”改革探索(论文提纲范文)
引言 |
1 3D打印技术专业“三教”面临的突出问题 |
1.1 师资团队的教学素养相对偏差 |
1.2 3D打印技术专业教材不成体系,资源匮乏 |
1.3 教法难以提升学生参与的主动性 |
2 3D打印技术应用专业“三教”改革措施 |
2.1 通过“名师引领、双元结构、分工协作”的准则塑造团队 |
2.1.1 依托有较强影响力的带头人,有效开发名师所具备的引领示范效果 |
2.1.2 邀请大师授教,提升人才的技术与技能水准 |
2.2 推进“学生主体、育训结合、因材施教”的教材变革 |
2.2.1 设计活页式3D打印教材 |
2.2.2 灵活使用信息化技术,形成立体化的教学 |
2.3 创新推行“三个课堂”教学模式,推进教法改革 |
2.3.1 采取线上、线下的混合式教法 |
2.3.2 构建与推进更具创新性的“三个课堂”模式 |
(6)转子有轴向通风孔的高压电动机电磁性能分析(论文提纲范文)
摘要 |
Abstract |
第1章 绪论 |
1.1 课题的研究目的及其意义 |
1.2 国内外发展及其研究现状 |
1.2.1 电磁分析国内外研究现状 |
1.2.2 多物理场耦合分析的国内外研究现状 |
1.2.3 关于轴向通风孔分析的国内外研究现状 |
1.3 本文的主要研究内容 |
第2章 YXKK355-4、400k W电动机建模 |
2.1 YXKK355-4、400k W基本参数 |
2.2 基本假设与数学模型 |
2.2.1 基本假设 |
2.2.2 数学模型 |
2.3 二维有限元模型建立 |
2.4 本章小结 |
第3章 YXKK355-4、400k W电机电磁分析 |
3.1 转子轭部开设轴向通风孔的电磁计算与试验分析 |
3.2 轴向通风孔对电磁场的影响 |
3.2.1 轴向通风孔对铁芯磁场的影响 |
3.2.2 轴向通风孔对气隙磁场的影响 |
3.3 有限元分析计算电磁性能 |
3.4 本章小结 |
第4章 转子轭部不同开孔方案的电磁分析 |
4.1 转子轭部开12个孔与8个孔磁场分析 |
4.1.1 转子轭部开12个孔磁场分析 |
4.1.2 转子轭部开8个孔磁场分析 |
4.2 转子轭部不同开孔方案分析 |
4.3 本章小结 |
第5章 开孔方案的改进及其性能分析 |
5.1 通风孔改进电机模型 |
5.2 通风孔改进电机电磁性能分析 |
5.2.1 通风改进电机磁场分析 |
5.2.2 通风改进电机性能分析 |
5.3 改进通风孔电机的多物理场分析 |
5.3.1 通风改进电机温度分析 |
5.3.2 改进通风孔电机应力分析 |
5.4 本章小结 |
结论 |
参考文献 |
攻读硕士学位期间发表的学术论文及获得成果 |
致谢 |
(7)Matlab环境下交流机车变频调速过程仿真(论文提纲范文)
摘要 |
Abstract |
1 绪论 |
1.1 研究意义 |
1.2 电力机车及交流传动系统的发展及现状 |
1.2.1 电力机车及交流传动系统的发展 |
1.2.2 电力机车及交流传动系统的国内外现状 |
1.2.3 电力机车及交流传动系统的发展趋势 |
1.3 研究内容和方法 |
2 变频调速系统的理论分析 |
2.1 异步牵引电机的调速方式分析 |
2.1.1 异步牵引电机基本原理 |
2.1.2 恒磁通调速原理分析 |
2.1.3 恒功率调速原理分析 |
2.2 三相异步电动机的矢量控制原理 |
2.3 牵引变流器工作原理 |
2.3.1 四象限脉冲整流器原理分析 |
2.3.2 PWM控制技术的原理分析 |
2.3.3 中间直流储能环节的原理与计算 |
2.3.4 逆变器原理分析 |
2.4 本章小结 |
3 仿真系统的搭建与结果分析 |
3.1 软件介绍 |
3.2 驱动信号模块的组成与仿真搭建 |
3.2.1 闭环系统的基本组成与建立 |
3.2.2 PWM信号的生成 |
3.2.3 PWM信号的仿真运行结果 |
3.2.4 PWM信号结果分析 |
3.3 仿真系统的搭建与结果分析 |
3.3.1 仿真系统的搭建 |
3.3.2 仿真的运行结果 |
3.4 本章小结 |
4 滤波电路的设计与计算 |
4.1 滤波电路的原理分析 |
4.2 滤波电路的设计与计算 |
4.3 本章小结 |
5 仿真模型的改进与仿真结果分析 |
5.1 改进模型的仿真结果 |
5.2 仿真运行结果分析 |
5.3 本章小结 |
总结 |
致谢 |
参考文献 |
(8)电力电子磁控电抗器及其合闸涌流抑制研究(论文提纲范文)
摘要 |
ABSTRACT |
第1章 绪论 |
1.1 研究背景及意义 |
1.2 相关技术国内外研究现状 |
1.2.1 拓扑结构与数学建模国内外研究现状 |
1.2.2 合闸涌流抑制研究现状 |
1.2.3 本体设计与多物理场耦合分析研究现状 |
1.3 需要解决的科学问题 |
1.4 本文主要研究内容和技术路线 |
第2章 磁控电抗器数学建模与阻抗变换机理研究 |
2.1 磁控电抗器拓扑结构设计 |
2.1.1 单绕组拓扑结构设计 |
2.1.2 多绕组拓扑结构设计 |
2.2 磁控电抗器工作原理分析 |
2.2.1 基本工作原理分析 |
2.2.2 多绕组工作原理分析 |
2.3 典型磁控电抗器的数学建模与阻抗变换机理分析 |
2.3.1 IGBT式磁控电抗器变换机理 |
2.3.2 晶闸管式磁控电抗器电抗变换机理 |
2.4 磁控电抗变换器数学建模与阻抗变换机理分析 |
2.5 本章小结 |
第3章 磁控电抗器涌流成因与涌流抑制方法研究 |
3.1 合闸涌流成因分析 |
3.2 合闸涌流抑制方法 |
3.2.1 空载合闸涌流抑制方法 |
3.2.2 带负载合闸涌流抑制方法 |
3.3 合闸涌流抑制仿真分析 |
3.3.1 空载合闸涌流抑制仿真分析 |
3.3.2 带负载合闸涌流抑制仿真分析 |
3.4 本章小结 |
第4章 磁控电抗器振动及噪声分析 |
4.1 振动来源及传递途径分析 |
4.1.1 振动来源分析 |
4.1.2 振动传递途径分析 |
4.2 铁芯振动及噪声产生机理 |
4.3 振动及噪声有限元仿真建模与分析 |
4.3.1 多物理场耦合分析 |
4.3.2 有限元几何建模 |
4.3.3 电磁模型有限元仿真与分析 |
4.3.4 结构力学模型有限元仿真与分析 |
4.3.5 声学模型有限元仿真与分析 |
4.4 涌流抑制对振动及噪声的影响分析 |
4.5 本章小结 |
第5章 磁控电抗器本体设计与温度场分析 |
5.1 磁控电抗变换器本体设计 |
5.1.1 磁控电抗变换器铁芯结构设计 |
5.1.2 磁控电抗变换器绕组设计 |
5.1.3 磁控电抗变换器主电抗计算 |
5.1.4 磁控电抗变换器漏电抗计算 |
5.2 磁控电抗变换器计算机辅助设计 |
5.2.1 辅助设计软件开发 |
5.2.2 磁控电抗器设计实例 |
5.3 温度场分析与有限元仿真 |
5.3.1 温度场分析 |
5.3.2 三维流场-温度场有限元仿真与分析 |
5.4 本章小结 |
第6章 高压大功率电动机软起动系统试验研究 |
6.1 基于磁控电抗器的软起动系统拓扑结构 |
6.2 软起动系统硬件设计与研制 |
6.2.1 主电路设计 |
6.2.2 人机交互单元设计 |
6.2.3 控制单元设计 |
6.2.4 阻抗变换器设计 |
6.3 控制软件设计 |
6.3.1 软件设计流程 |
6.3.2 软起动控制算法设计 |
6.4 磁控电抗器软起动系统挂网试验 |
6.4.1 空载挂网试验 |
6.4.2 带负载挂网试验 |
6.5 本章小结 |
第7章 全文总结和展望 |
7.1 全文总结 |
7.2 研究展望 |
致谢 |
参考文献 |
攻读博士学位期间发表的学术论文 |
攻读博士学位参加的科研项目和获得授权专利 |
(9)MMA装置和SAR装置变电所供配电及综合自动化系统设计(论文提纲范文)
摘要 |
ABSTRACT |
第一章 绪论 |
1.1 课题的工程背景 |
1.1.1 工程概况 |
1.1.2 全厂供电及控制结构 |
1.2 课题的意义 |
1.3 研究现状 |
1.3.1 供配电系统 |
1.3.2 综合自动化系统 |
1.3.3 系统功能安全分析法 |
1.4 论文的主要工作 |
1.4.1 供配电系统研究与设计 |
1.4.2 综合自动化系统设计 |
1.4.3 综合自动化系统结构可靠性分析 |
1.5 论文章节安排 |
第二章 供配电系统的设计要求与方法 |
2.1 引言 |
2.2 负荷分级 |
2.2.1 装置用电负荷分级 |
2.2.2 企业用电负荷分级 |
2.3 供电电源方案 |
2.4 负荷计算方法分析 |
2.4.1 负荷计算目的和意义 |
2.4.2 负荷计算方法 |
2.5 无功补偿 |
2.5.1 无功补偿目的和意义 |
2.5.2 无功补偿方法 |
2.6 变压器的选择 |
2.6.1 变压器数量和容量选择原则 |
2.6.2 变压器负荷分配 |
2.7 供配电系统主接线设计要求 |
2.7.1 10k V和0.4k V系统主接线要求 |
2.7.2 照明系统主接线要求 |
2.8 短路电流计算 |
2.8.1 短路电流计算目的和意义 |
2.8.2 短路电流的计算方法 |
2.9 一次电气设备选择与校验 |
2.9.1 一次电气设备选择要求 |
2.9.2 一次电气设备校验要求 |
2.10 防雷、接地 |
2.10.1 建筑物防雷、接地目的 |
2.10.2 建筑物防雷措施 |
2.10.3 接地电阻要求 |
2.10.4 接地型式要求 |
2.11 本章小结 |
第三章 供配电系统的设计过程 |
3.1 负荷计算 |
3.1.1 负荷计算公式 |
3.1.2 废酸再生装置负荷列表与计算 |
3.1.3 甲基丙烯酸甲酯装置负荷列表与计算 |
3.1.4 装置负荷列表与计算 |
3.2 无功补偿 |
3.2.1 无功补偿容量计算 |
3.2.2 无功补偿后的总计算负荷 |
3.3 变压器选择 |
3.3.1 变压器数量和容量 |
3.3.2 变压器负荷分配 |
3.3.3 变压器的选择及负荷率 |
3.4 供配电系统主接线设计 |
3.4.1 10k V系统主接线设计 |
3.4.2 0.4k V系统主接线设计 |
3.4.3 照明系统主接线设计 |
3.5 短路电流计算 |
3.5.1 短路电流计算条件 |
3.5.2 短路点的选取 |
3.5.3 系统网络元件数据 |
3.5.4 短路电流计算公式 |
3.5.5 短路电流计算书 |
3.6 一次电气设备选择与校验 |
3.6.1 电缆的选择与校验 |
3.6.2 断路器的选择与校验 |
3.6.3 电流互感器的选择与校验 |
3.6.4 电压互感器的选择与校验 |
3.6.5 高压熔断器的选择与校验 |
3.7 防雷、接地设计 |
3.7.1 建筑物防雷分类 |
3.7.2 直击雷防护 |
3.7.3 接地电阻 |
3.7.4 低压系统接地型式 |
3.8 应用展示 |
3.9 本章小结 |
第四章 综合自动化系统设计 |
4.1 引言 |
4.2 综合自动化的结构形式 |
4.2.1 集中式结构 |
4.2.2 分层分布式结构 |
4.3 通信网络拓扑结构 |
4.3.1 星型结构 |
4.3.2 环型结构 |
4.3.3 总线型结构 |
4.4 通信技术 |
4.4.1 串行通信接口标准 |
4.4.2 通信网络设备 |
4.4.3 通信介质 |
4.5 综合自动化系统配置方案 |
4.5.1 系统架构 |
4.5.2 智能终端配置 |
4.5.3 间隔层设备组网 |
4.5.4 通信管理层设备组网 |
4.5.5 系统网络结构图 |
4.5.6 系统功能 |
4.6 画面展示 |
4.7 本章小结 |
第五章 综合自动化系统结构的可靠性分析 |
5.1 引言 |
5.2 故障树理论 |
5.3 故障树模型的建立 |
5.3.1 确定顶事件 |
5.3.2 建立故障树模型 |
5.4 故障树定性分析 |
5.4.1 非冗余结构分析 |
5.4.2 冗余结构分析 |
5.5 故障树定量分析 |
5.6 本章小结 |
第六章 总结和展望 |
6.1 总结 |
6.2 展望 |
参考文献 |
致谢 |
攻读硕士学位期间已发表或录用的论文 |
(10)基于浮动核电站海上新能源综合电力系统的研究(论文提纲范文)
摘要 |
abstract |
第1章 绪论 |
1.1 课题研究的背景与意义 |
1.2 浮动核电站国内外研究现状 |
1.3 新能源发电技术国内外研究现状 |
1.4 主要研究内容 |
第2章 基于浮动核电站海上新能源综合电力系统的结构及原理 |
2.1 汽轮机的基本原理 |
2.1.1 汽轮机的工作原理 |
2.1.2 汽轮机调节系统 |
2.2 光伏发电系统的基本原理 |
2.2.1 光伏电池数学模型 |
2.2.2 最大功率点跟踪控制 |
2.2.3 并网系统 |
2.3 风力发电系统的基本原理 |
2.3.1 双馈风力发电系统的结构及原理 |
2.3.2 双馈风力发电系统数学模型 |
2.4 蓄电池的基本原理 |
2.4.1 蓄电池的数学模型 |
2.4.2 蓄电池的充放电控制 |
2.5 应急柴油发电机的基本原理 |
2.5.1 柴油机数学模型 |
2.5.2 柴油机调速系统 |
2.6 本章小结 |
第3章 基于浮动核电站海上新能源综合电力系统的建模与验证 |
3.1 汽轮发电机组的仿真模型及曲线 |
3.1.1 仿真模型 |
3.1.2 仿真波形 |
3.2 光伏发电系统的仿真模型及曲线 |
3.2.1 仿真模型 |
3.2.2 仿真波形 |
3.3 风力发电系统的仿真模型及曲线 |
3.4 蓄电池的仿真模型及曲线 |
3.5 应急柴油发电机组的仿真模型及曲线 |
3.6 本章小结 |
第4章 新能源发电系统并网对综合电力系统的影响分析 |
4.1 综合电力系统整体结构 |
4.2 新能源发电系统的并网仿真分析 |
4.2.1 新能源并网的稳定性仿真 |
4.2.2 负荷变化的稳定性仿真分析 |
4.3 新能源发电系统作为核电站补充应急电源的研究 |
4.3.1 新能源发电系统作为应急电源的结构组成 |
4.3.2 新能源发电系统作为应急电源的仿真分析 |
4.3.3 新能源发电系统作为应急电源的问题分析 |
4.4 本章小结 |
第5章 应急柴油发电机组的容量确定及加载仿真计算 |
5.1 应急柴油发电机组的容量选择依据 |
5.2 机组容量选择及校核计算 |
5.2.1 计算长期连续运行所需要的容量 |
5.2.2 计算加载过程所需要的容量 |
5.2.3 机组容量校核计算 |
5.3 机组容量仿真验证 |
5.3.1 加载过程电压降计算 |
5.3.2 加载过程频率降计算 |
5.4 本章小结 |
结论 |
参考文献 |
攻读硕士学位期间发表的论文和取得的科研成果 |
致谢 |
四、高压大型异步电动机启动压降的计算(论文参考文献)
- [1]电动机启动压降精确计算及比较[J]. 段梦菲,杨嘉城. 机电工程技术, 2021(06)
- [2]泵站异步电动机启动压降计算及启动方式[J]. 练炤懿. 中国新技术新产品, 2020(18)
- [3]泵站10kV异步电动机启动压降计算及启动方式分析[J]. 周逸波. 水利技术监督, 2020(04)
- [4]斩波串级调速系统稳态特性分析及系统综合优化研究[D]. 王兴武. 华北电力大学(北京), 2020(06)
- [5]3D打印技术专业“三教”改革探索[J]. 刘森,张书维,侯玉洁. 数码世界, 2020(04)
- [6]转子有轴向通风孔的高压电动机电磁性能分析[D]. 倪方雷. 哈尔滨理工大学, 2020(02)
- [7]Matlab环境下交流机车变频调速过程仿真[D]. 马天银. 兰州交通大学, 2020(01)
- [8]电力电子磁控电抗器及其合闸涌流抑制研究[D]. 黄文聪. 武汉理工大学, 2020
- [9]MMA装置和SAR装置变电所供配电及综合自动化系统设计[D]. 吴睿雅. 上海交通大学, 2020(01)
- [10]基于浮动核电站海上新能源综合电力系统的研究[D]. 成倩. 哈尔滨工程大学, 2020(05)