一、武钢5号高炉长寿技术(论文文献综述)
卢正东[1](2021)在《高炉炉衬与冷却壁损毁机理及长寿化研究》文中指出现代高炉的技术方针是“长寿、高效、低耗、优质和环保”,其中“长寿”是实现高炉一切技术目标的基础。针对目前我国高炉普遍存在的炉缸炉底炉衬和高热负荷区域冷却壁的损毁问题,本文以武钢高炉为研究对象,首先确定了高炉炉衬与冷却壁长寿技术研究方法,然后分别研究了炉衬与冷却壁的损毁机理。在此基础上,进一步开展了炉缸结构设计与炉衬选型研究,探讨高热负荷区域铜冷却壁渣皮与热流强度监测系统的开发与应用,并提出了武钢高炉长寿优化措施,全文主要结论如下:武钢4号、5号高炉大修破损调查表明:炉缸炉底侵蚀特征主要表现为炉缸环缝带侵蚀和炉缸炉底象脚状侵蚀。通过炭砖热应力计算和岩相分析,炉缸环缝产生原因在于炉缸径向热应力较大,当炭砖性能较差时会产生微裂纹,在炉内高压下有害元素以蒸汽形式迁移至裂纹处发生液化,并与CO发生反应,生成氧化物、碳酸盐和石墨,形成炉缸环缝侵蚀带。通过炉底死焦柱受力分析与计算,死铁层较浅,死焦柱沉坐炉底,加剧铁水对炭砖侧壁的环流冲刷是造成炉缸炉底象脚状侵蚀的主要原因。针对炉役中期炉底温度异常升高问题,武钢采用钛矿护炉,停炉取样显微分析表明:沉积物中Ti的存在形式主要为Ti C、Ti N、Ti单质,并呈现颗粒皱褶和堆叠形貌,当其附着在炉缸侧壁和炉底时可有效缓解侵蚀进程。武钢生产实践表明,当钒钛矿用量2%~3%时,生铁含钛可达0.10~0.20%,渣铁流动性尚可,炉衬侵蚀速度得到控制。通过武钢5号、1号、7号和6号高炉开展大中修破损调查,对高炉铸铁冷却壁和铜冷却壁开展了力学性能、理化指标和显微结构分析,研究结果表明:铸铁冷却壁主要表现为纵、横裂纹引起的壁体开裂,严重部位存在壁体烧损甚至脱落,其损毁原因主要在于热应力造成的壁体开裂,以及高炉气氛下铸铁基体的氧化与生长。铜冷却壁损毁机理在于:高炉渣皮脱落后,煤气流和炉料与铜冷却壁热面直接接触,使壁体温度升高力学性能下降产生热变形,应力应变长期积累使壁体热面形成微小裂纹,然后在渣铁和煤气的渗透作用下发生熔损和脱落。对于炉腹段铜冷却壁底部水管处的损毁,原因还在于结构设计存在缺陷,冷却壁底部容易受到高温煤气流、渣铁流的冲刷,从而造成壁体的损毁。为满足高炉长寿要求,针对炉缸砌筑结构和炉衬选型问题,通过建立传热模型,采用数值模拟软件计算了高炉全生命周期炉缸传热效果,结果表明:在烘炉阶段,采用停水方式可保证烘炉效果。在炉役初期和中期,不同炉缸结构温度场相近,仅当进入炉役后期,温度差别才逐渐扩大。综合传热计算、热阻分析和建造成本,采用铸铁冷却壁可以满足炉缸传热的需要。针对“铸铁冷却壁+大块炭砖”与“铸铁冷却壁+复合炭砖”两种炉缸结构,研究了炭砖在不同导热系数下的炉缸温度场分布情况。当炉役初期陶瓷杯存在,大块炭砖导热系数为25W/(m·K)时,前者炭砖热面温度为571℃,后者为537℃,可基本杜绝有害元素化学反应的发生;当炉衬热面降至1150℃时,前者耐材残余厚度为850mm,后者为1060mm,均可满足高炉长寿服役要求。针对“铸铁冷却壁+大块炭砖”结构炉缸,研究了冷却比表面积对炉缸温度场的影响。结果表明不同冷却比表面积冷却壁对应的炉衬热面温度差别始终很小,即单纯提高冷却比表面积对降低炉缸温度场作用甚微,故在实际设计时应结合冷却壁制造和冷却水运行成本综合考虑,采用适宜高炉安全经济生产需要的冷却比表面积和水管参数。另外,对炉缸立式和卧式冷却壁优缺点进行了对比分析,从炉缸全周期使用需求考虑,建议采用立式冷却壁。最后,提出了提出了延长高炉炉缸寿命的技术对策及炉缸安全状况的评价方法。针对单独采用热电偶温度或水温差计算热流强度的不足,武钢采取计算和记录冷却壁水温差、热流强度、跟踪热电偶测温数据以及炉役末期炉壳贴片测温相结合的方法综合判断炉缸状况,收效良好。针对高热负荷区域冷却壁的损毁问题,首先对武钢7号高炉铜冷却壁渣皮进行了化学成分、物相形貌、及物理性能研究:其主要物相为黄长石、尖晶石和碳,渣皮中Al2O3含量较高,易形成高熔点的镁铝尖晶石。渣皮流动性温度为1584.1℃,粘度为1000m Pa·s(1550℃),导热系数约为1.5W/(m·K)。然后确定了武钢高炉渣皮厚度、热流强度、炉气温度的计算方法,开发了铜冷却壁渣皮厚度与热流强度监控系统,该系统目前运行稳定,可掌握高炉渣皮波动规律,快速研判高炉渣皮厚度、热流强度及炉型变化趋势,及时调整高炉操作模式。针对炉腹铸铁冷却壁损毁问题,采用增大炉腹冷却壁下部厚度,利用壁体上窄下宽的外型缩小炉腹角,有效遏制了冷却壁的损毁现象;针对炉腹铜冷却壁底部损毁问题,将进水管处改为凸台包覆设计,以防止煤气流从炉腹炉缸衔接处窜入烧坏进水管,从而解决了炉腹段铜冷却壁的损毁问题。冷却壁长寿服役的核心在于保持冷却壁始终处于无过热状态,武钢在高炉生产中,采取控制有害元素入炉,稳定用料结构,保持合理的热制度和造渣制度,通过上下部调剂和强化冷却系统管理,确保冷却壁渣皮厚度合理,从而有效延长了冷却壁的使用寿命。
曾伟涛[2](2020)在《武钢8号高炉投产10年冷却壁零破损总结》文中研究说明武钢8号高炉,2019年8月1日投产,投产10年冷却壁零破损,单位炉容产铁系数达到8680.3t/m3,在高炉长寿工作方面达到国际一流水平。文章对武钢8号高炉冷却壁零破损的原因进行了总结,认为8号高炉充分吸取了原武钢大型高炉冷却璧破损调查的经验,采用了合理的冷却材质,实行严格的锌负荷管理,采取适宜的上下部相结合的操作制度来保证高炉炉况长期顺行,实现了8号高炉冷却壁投产10年零破损。
牛群[3](2020)在《长寿高炉炉缸炉底影响因素研究》文中指出炉缸寿命是当前大高炉长寿的决定性因素之一。只有掌握了炉缸内部铁水流动、炉缸焦炭、炭砖及其保护层之间的交互作用规律,才能找出延长炉缸寿命的措施。铁水对炉缸侧壁的冲刷侵蚀是导致炉缸寿命短的主要原因之一。炉缸长寿的关键是在炭砖热面凝结一层渣铁壳,隔离炙热铁水与炭砖的直接接触。炭砖附近的铁水流速和炭砖热面温度是影响渣铁壳凝结的主要因素。影响炉缸侧壁附近铁水流速的主要因素有(1)死料柱焦炭行为(死料柱空隙度分布、焦炭粒度和焦炭密度等);(2)铁口维护制度;(3)炉缸工作状态(死料柱浮起高度和中心透液性等)。砌筑和冷却良好的高炉,如果炭砖形成脆化层,会降低炭砖的导热性能,使炭砖热面温度升高,不利于炭砖热面渣铁壳的新生和稳定存在,这也是导致炉缸寿命短的主要原因之一。本文通过炉缸破损调研、数值仿真和热态实验三种方法对长寿炉缸炉底的影响因素进行了研究,加深了对炉缸内部死料柱焦炭、炭砖脆化层、渣铁壳和炉缸铁水流动规律的认识,对高炉炉缸设计和高炉操作有一定的指导意义。本文首先通过2800m3和5500 m3工业高炉炉缸破损调研的方法详细研究了风口以下1.5m至炉底之间不同炉缸高度和不同径向位置死料柱焦炭的无机矿物组成、石墨化程度、粒度分布、强度和死料柱空隙度分布。结果表明,2800m3工业高炉风口以下2.5m至炉底之间死料柱焦炭内部填充了大量高炉渣。在5500 m3高炉炉缸破损调研中也发现了大量高炉渣浸入风口以下1.8m至铁口中心线之间死料柱焦炭中。死料柱焦炭无机矿物质含量随着距风口距离的增加而增加,平均含量为45%。大部分死料柱焦炭质量是相同条件下入炉焦炭质量的1.43-2.21倍。死料柱焦炭高度石墨化,且越靠近炉底,焦炭粉末石墨化程度越高。2800 m3和5500m3高炉死料柱焦炭平均粒径在直径方向上分别呈“M”和倒“V”型,焦炭平均粒径分别为28.7mm和23.5mm,分别较入炉焦炭降低了 47%和56%。靠近死料柱底部附近,死料柱空隙度随着距风口距离和距炉墙距离的增加而降低,平均空隙度为0.3。其次,在炉缸死料柱焦炭行为研究的基础上,建立了包括死料柱和泥包在内的5500 m3高炉炉缸铁水流动数学模型,研究了不同铁口维护制度(铁口深度、铁口倾角和双铁口出铁等)和不同炉缸工作状态(死料柱浮起高度和中心透液性等)对炉缸侧壁附近铁水流速的影响。结果表明,增加出铁口深度、铁口倾角为10°和选择夹角为180°的双铁口出铁有利于降低炉缸侧壁附近的铁水流速,延长高炉炉缸寿命。当死料柱中心、中间和边缘空隙度分别为0.2、0.3和0.35时,炉缸炉底交界面附近的铁水流速随着死料柱浮起高度(0.8m→0.1m)的降低而大幅度增加,这表明死料柱小幅度浮起可能导致炉缸“象脚状”侵蚀。死料柱浮起高度处于0.6m-0.8m之间有利于高炉炉缸长寿。死料柱沉坐和浮起时,只有当死料柱中心透液性较差区域(空隙度为0.1)分别发展为炉缸直径的26%和50%时才会引起炉缸侧壁附近铁水流速增加。然后,通过2800m3高炉炉缸破损调研分析了碱金属和锌对炉缸炭砖的蚀损机理和炭砖凝结渣铁壳的形成机理。在2800m3高炉炉缸残余炭砖脆化层中含有大量的Zn2SiO4、KA1SiO4、ZnO、KA1Si2O6及少量的 ZnS 和ZnAl2O4。结合当前炭砖和残余炭砖脆化层矿物质组成,揭示了炭砖脆化层的形成机理。在炉缸炭砖热面凝结层和炉底陶瓷垫中均发现了高炉渣的存在,凝结层中的高炉渣主要来源于浸入到焦炭内部的高炉渣,而不是来源于入炉焦炭灰分。最后,设计建造了模拟高炉炉缸冶炼过程的热态实验炉。在炭砖冷面设计有冷却水管模拟炉缸冷却壁。三相交流电电极作为加热源,保证渣铁水温度在1550℃左右。通过热态实验炉炉底吹氮气搅拌熔池来模拟炉缸渣铁水流动。实验发现,当炭砖热面温度低于渣铁壳凝固温度,在炭砖热面就可以形成渣铁壳。在该热态实验中通过在炉缸炭砖中产生钾、钠和锌蒸气,模拟了高炉炉缸持续的钾、钠和锌蒸气对炭砖的破坏。总之,通过本文研究表明,高炉渣通过死料柱焦炭的运动可以被带入铁口以下炉缸区域。由于死料柱焦炭浸入大量高炉渣导致死料柱重力增大,为保证死料柱浮起较高高度应适当增加死铁层深度。在高炉冶炼过程,适宜条件下,炉缸炉底内衬热面能够凝结渣铁壳。为延长高炉炉缸寿命,应制定合理的出铁维护制度和保证入炉焦炭质量,改善死料柱中心透液性,降低炉缸侧壁铁水流速,并严格控制入炉K和Zn负荷,避免炭砖脆化层的形成,促进炭砖热面渣铁壳的形成,隔离与炙热铁水的直接接触,延长高炉炉缸寿命。
秦偲杰[4](2019)在《国内某1800m3高炉炉缸侵蚀行为与机理研究》文中进行了进一步梳理随着高炉大型化的不断发展,高炉长寿技术的研究迫在眉睫,而高炉炉缸砖衬的侵蚀速率作为高炉寿命的限制性环节,受到了研究人员的密切关注。该高炉一代炉龄只维持了7年3个月,属于国内炉龄较短的高炉之一,通过对该高炉进行炉缸破损调查,研究炉缸的侵蚀行为与机理。本文对该高炉的炉役概况进行介绍及评价,从炉缸结构、耐火材料、冷却系统以及热风炉系统等多个方面,评价了该高炉设计的合理性,并简要说明了高炉炉役期的生产情况。其次,总结了高炉炉缸炉底的侵蚀炉型及侵蚀规律,并对炉缸内的侵蚀形貌、特征等进行分析;根据炉缸内环热电偶温度的最高点及其所对应冷端温度值,得到炉缸碳砖残余厚度的理论计算值,这对于分析碳砖的实际侵蚀状况具有一定的参考价值;并且,归纳了炉役末期炉缸侵蚀严重处即标高7.851m、8.653m与9.455m处热电偶的温度走势,结合当期铁水中Mn、Ti等元素对应含量变化,对炉缸各部位砖衬的实际侵蚀情况进行了综合的分析。基于所取炉缸炉底部位受到侵蚀的残余砖衬样品,选取具有代表性的碳砖、陶瓷垫与粘结层部位,对其进行元素、形貌、能谱和物相等分析:掌握炉缸内各位置碳砖的侵蚀特点,通过计算明确了Zn在炉缸内参与反应并破坏碳砖的机理,并分析了陶瓷垫的侵蚀特点及其保存相对较好的原因,同时对粘结层及其表面有害元素的赋存形态、富集程度等方面进行分析,探索其炉缸粘结层的保护作用机制。最后,对炉缸区的有害元素含量分布与焦炭质量这两个重要指标进行研究:(1)从炉缸纵向和横向两个方面对有害元素的空间分布特点进行分析,了解其在炉缸内的分布规律及对炉缸侵蚀的影响;(2)通过工业分析、形貌、能谱等综合分析手段,掌握焦炭达到炉缸区的质量,研究焦炭在炉缸内的劣化行为。
梁为秋[5](2019)在《死料柱对铁水流动状况影响的数值模拟》文中指出高炉炉缸侵蚀与炉缸内铁水流动状态密切相关,铁水的流动冲刷是造成炉缸侧壁剪切应力增大、引起炉缸侧壁温度升高、影响高炉寿命的重要原因之一。高炉炉缸铁水流动行为很大程度上取决于死料柱状态及出铁操作,为延长高炉炉缸寿命,课题以流体力学相关理论为基础,通过FLUENT软件模拟计算,死料柱不同浮起高度、不同孔隙度和出铁口不同流量条件下的炉缸内铁水流动规律和炉底、炉缸侧壁剪切应力分布规律,现结论如下:1)铁水从入口平面到出铁口之间的流动并不是沿着距离最短的直线路径运动的,而是具有一定的路径向出铁口运动。2)死料柱沉座炉底是产生铁水环流的主要原因。死料柱浮起高度增加,可以有效降低铁水环流,同时使炉底铁水流动分布更加均匀。3)死料柱浮起高度在一定范围内增高时,炉底中心剪切应力相应增大,但当死料柱浮起高度超过一定范围后再增高,炉底中心剪切应力则呈现变小的趋势。炉底边缘剪切应力随着死料柱浮起高度增加而一直变小。4)死料柱孔隙度变大,会降低死料柱内铁水流量,无焦空间和缝隙铁水流量变大。死料柱孔隙度变化,对出铁口对面的炉缸侧壁整体受到冲刷侵蚀的影响十分有限,对出铁口一侧炉缸侧壁的铁水冲刷侵蚀无影响。5)出铁口流量变大,对炉缸铁水流动状态影响不大,但缝隙和无焦空间铁水流速增加,炉底和炉缸侧壁剪切应力逐渐变大,受到的冲刷侵蚀加剧。图57幅;表6个;参52篇。
张权[6](2017)在《基于边界元法的高炉炉缸炉底侵蚀模型的研究与应用》文中提出随着高炉大型化的推进,高炉容积越来越大,设备也越来越先进,高炉的寿命也越来越长。尽管如此,高炉工作者依然在不懈地研究,希望可以在延长高炉寿命这一问题上能有更大的突破。高炉服役后,高炉炉缸炉底内衬的侵蚀状态是决定高炉寿命的主要因素,一旦高炉内衬侵蚀达到一定程度,炉缸会破溃而造成重大安全事故。过早停炉会造成重大浪费,但若不及时停炉又会酿成重大事故。因此,通过现有的条件和技术来实时监测炉缸炉底侵蚀状态对高炉安全生产具有重要的实际指导意义。本文以武钢4号高炉为研究对象,以传热学为基本理论,通过边界元的方法建立了高炉炉缸炉底传热过程的数学模型。总结本文的研究工作,主要内容如下:(1)在建立炉缸炉底侵蚀模型时,并没有直接以高炉炉缸炉底的真实边界为边界,而是以炉缸炉底炉衬的外边界的热电偶所处的位置为边界,这样处理不仅使模型的计算得以简化,而且计算的精度更高。(2)模型计算考虑了耐火材料导热系数随温度变化给计算带来的影响,采用基尔霍夫变化的方法,将非线性问题转变为线性问题,解决了利用边界元法建立高炉炉底炉缸侵蚀模型把导热系数看成常数而造成计算精度下降的问题。(3)在计算用边界元法得出的线性方程组时,采用了超松弛迭代的方法来求解,大大加快了收敛的速度。(4)模型首先通过正交实验的优化设计方法,在假定25条侵蚀线后,比较8支监测点热电偶的计算温度和实际温度,得到了最优化的侵蚀线,然后采用样条曲线来曲线拟合这些已经校正好了的控制点,实现了1150℃侵蚀线的逼近和拟合,保证了等温线的真实性。比较计算值与热电偶实际值,绝对误差的最大值为7.5℃,最大相对误差为2.23%,误差在实际工程误差允许(<5%)范围内,计算值和实际热电偶值吻合较好。1150℃侵蚀线和870℃炭砖脆化线皆在陶瓷杯中,可以判定高炉处于安全生产状况。
章铭明,王潞明[7](2015)在《武钢5号高炉长寿生产实践》文中研究表明对武钢5号高炉长寿生产实践进行了总结。通过设计上的优化,重视高炉长寿工作,调剂风口,调整装料制度,5号高炉炉况顺行,保持了良好的操作炉型,冷却壁处于良好的工作状态。
梁利生[8](2012)在《宝钢3号高炉长寿技术的研究》文中研究表明延长高炉寿命不仅可以直接减少昂贵的大修费用,而且可以避免由于停产引起的巨大经济损失。延长高炉寿命已经成为广大高炉炼铁工作者重点关注的课题。高炉长寿是一项综合的系统工程,影响因素很多,而高炉一代炉役寿命取决于这些因素的综合效果。本文对宝钢3号高炉长寿技术,从设计制造、施工砌筑、操作管理到检测维护等方面进行了全面系统的研究,形成了具有3号高炉自身特点的长寿综合技术。在认真研究和分析1、2号高炉设计上存在的不足、并吸取世界长寿高炉经验的基础上,对宝钢3号高炉炉型设计、耐材配置、冷却设备选型、检测监控设置等方面进行了研究和优化,并大胆采用了一些长寿新技术,为3号高炉炉况稳定和长寿奠定了基础。宝钢3号高炉在炉型设计时,对设计炉型与操作炉型的结合问题进行了认真的研究,充分考虑到投产后形成实际操作炉型的合理性,特别在高径比、死铁层深度、炉腹角及炉身角等方面进行了优化,并对炉身中下部厚壁与炉身上部薄壁的交界处进行了圆滑过渡的处理,有利于煤气流分布的控制。3号高炉炉体冷却系统采用全铸铁冷却壁形式和纯水密闭循环冷却,按照炉体不同部位的工作环境和工艺要求,配置了不同结构型式的冷却壁和耐火材料炉衬,尤其在炉缸H1-H4段采用了新式高冷却强度横型冷却壁,并配置美国UCAR高导热性小块炭砖,为3号高炉炉缸长期保持良好的状态起到了关键性作用。宝钢3号高炉投产以来,通过强化原燃料质量管理、严格控制碱金属和锌负荷入炉、优化炉料结构,并根据不同时期的生产条件,结合高炉自身特点和难点,不断研究、优化上部装料制度和下部送风制度,控制合适的鼓风动能和炉体热负荷,实现合理的煤气流分布,从而确保3号高炉炉况长期稳定顺行,取得世界一流的技术经济指标和长寿业绩。针对3号高炉投产后冷却壁水管较早出现破损的原因进行了分析,对冷却系统进行了一系列优化改造,大大提高了冷却强度,改善了水质,有效缓解了冷却壁水管的破损。并通过实施安装微型冷却器、硬质压入、人工造壁、整体更换S3、S4段冷却壁等多项长寿维护措施,显着改善了炉身的长寿状况,确保3号高炉炉役中后期仍然保持规整的操作炉型,为强化冶炼创造了条件。在投产后的很长一段时间内,3号高炉的炉缸一直处于良好的状态,没有像1、2号高炉第一代炉役那样一直受炉缸侧壁温度的困扰。然而随着炉役时间的延长,特别是在炉役后期超过设计炉龄后仍然保持长时间的高冶炼强度,炉缸侧壁温度呈现逐步上升的趋势。3号高炉通过进一步提高炉缸冷却强度、加强出铁口状态维护、改善炉缸活跃性、强化炉缸状态监控、炉缸压浆等多项长寿维护措施的研究和实施,保证了3号高炉在炉役后期继续保持强化冶炼的前提下,侧壁温度总体安全受控,从而有效延长了3号高炉的寿命。通过对宝钢3号高炉长寿综合技术的研究和实施,截至2012年10月,宝钢3号高炉已稳定运行了18年,累计产铁量达到6541万吨,单位炉容产铁量达到15036t/m3,目前还在生产中,创造了国内长寿高炉的记录。
张寿荣[9](2012)在《关于我国炼铁高炉的长寿问题》文中研究指明1武钢高炉长寿技术发展的回顾1.1问题出现武汉钢铁公司是新中国成立后我国兴建的第一座大型钢铁联合企业,属于"一五"期间苏联援建的156项工业项目之一。钢厂部分由苏联列宁格勒黑色冶金设计院(Γипромец)提供设计。武钢1号高炉于1957年开始施工,1958年9月13日点火投产。1号高炉容积1386m3,是我国第一座1000 m3以上的大型高炉。当时我国没有大型高炉的操作经验,是全面学习苏联的高炉技术。武钢1号高炉的投产总的来看是成功的。1959年7月,武钢2号高炉投产。1961年下半年,1号高炉炉腹冷却板(铸钢)出现烧坏漏水现象。1962年
陆隆文,杨佳龙[10](2011)在《武钢炼铁“十一五”技术装备进步》文中进行了进一步梳理总结了武钢在过去的5年内的生产技术装备的总体情况,分析了。高炉高强化生产的工艺技术与设备保障,阐述了高炉主要指标创历史与世界一流水平的技术措施。提出了存在的问题与应对方法等。
二、武钢5号高炉长寿技术(论文开题报告)
(1)论文研究背景及目的
此处内容要求:
首先简单简介论文所研究问题的基本概念和背景,再而简单明了地指出论文所要研究解决的具体问题,并提出你的论文准备的观点或解决方法。
写法范例:
本文主要提出一款精简64位RISC处理器存储管理单元结构并详细分析其设计过程。在该MMU结构中,TLB采用叁个分离的TLB,TLB采用基于内容查找的相联存储器并行查找,支持粗粒度为64KB和细粒度为4KB两种页面大小,采用多级分层页表结构映射地址空间,并详细论述了四级页表转换过程,TLB结构组织等。该MMU结构将作为该处理器存储系统实现的一个重要组成部分。
(2)本文研究方法
调查法:该方法是有目的、有系统的搜集有关研究对象的具体信息。
观察法:用自己的感官和辅助工具直接观察研究对象从而得到有关信息。
实验法:通过主支变革、控制研究对象来发现与确认事物间的因果关系。
文献研究法:通过调查文献来获得资料,从而全面的、正确的了解掌握研究方法。
实证研究法:依据现有的科学理论和实践的需要提出设计。
定性分析法:对研究对象进行“质”的方面的研究,这个方法需要计算的数据较少。
定量分析法:通过具体的数字,使人们对研究对象的认识进一步精确化。
跨学科研究法:运用多学科的理论、方法和成果从整体上对某一课题进行研究。
功能分析法:这是社会科学用来分析社会现象的一种方法,从某一功能出发研究多个方面的影响。
模拟法:通过创设一个与原型相似的模型来间接研究原型某种特性的一种形容方法。
三、武钢5号高炉长寿技术(论文提纲范文)
(1)高炉炉衬与冷却壁损毁机理及长寿化研究(论文提纲范文)
摘要 |
Abstract |
引言 |
第1章 文献综述 |
1.1 现代高炉长寿概况 |
1.2 高炉长寿设计研究进展 |
1.2.1 炉缸结构 |
1.2.2 炉底死铁层 |
1.3 高炉炉衬与冷却壁选材研究进展 |
1.3.1 耐火材料 |
1.3.2 冷却壁 |
1.4 高炉损毁机理研究进展 |
1.4.1 炉缸炉底损毁机理 |
1.4.2 炉体冷却壁损毁机理 |
1.5 高炉传热机理研究进展 |
1.5.1 高炉炉缸炉底传热 |
1.5.2 高炉炉体冷却壁传热 |
1.6 本论文的提出和研究内容 |
1.6.1 论文提出 |
1.6.2 研究内容 |
第2章 高炉损毁机理研究方法 |
2.1 高炉破损调查 |
2.1.1 破损调查内容 |
2.1.2 破损调查方法 |
2.2 实验研究方法 |
2.2.1 炭砖表征 |
2.2.2 冷却壁表征 |
2.2.3 渣皮表征 |
2.3 高炉炉衬与冷却壁传热性能研究 |
2.3.1 传热模型建立 |
2.3.2 模型验证 |
第3章 武钢高炉炉缸炉底损毁机理研究 |
3.1 高炉炉缸炉底损毁特征分析 |
3.1.1 武钢4 号高炉破损调查(第3 代) |
3.1.2 武钢5 号高炉破损调查(第1 代) |
3.2 炉缸炉底损毁机理研究 |
3.2.1 炉缸环缝侵蚀 |
3.2.2 炉缸炉底象脚区域损毁 |
3.3 高炉钛矿护炉研究 |
3.3.1 Ti(C,N)形成热力学分析 |
3.3.2 破损调查取样与表征 |
3.3.3 武钢高炉钛矿护炉效果分析 |
3.4 本章小结 |
第4章 武钢高炉冷却壁损毁机理研究 |
4.1 高炉冷却壁损毁特征分析 |
4.1.1 武钢5 号高炉破损调查(第1 代) |
4.1.2 武钢1 号高炉破损调查(第3 代) |
4.1.3 武钢7 号高炉破损调查(第1 代) |
4.1.4 武钢6 号高炉破损调查(第1 代) |
4.2 球墨铸铁冷却壁损毁机理研究 |
4.2.1 力学性能分析 |
4.2.2 显微结构分析 |
4.2.3 损毁机理分析 |
4.3 铜冷却壁损毁机理研究 |
4.3.1 力学性能分析 |
4.3.2 理化指标分析 |
4.3.3 显微结构分析 |
4.3.4 损毁机理分析 |
4.4 本章小结 |
第5章 武钢高炉炉缸内衬设计优化研究 |
5.1 高炉炉缸全生命周期温度场分析 |
5.1.1 烘炉阶段炉缸温度场 |
5.1.2 炉役初期炉缸温度场 |
5.1.3 炉役全周期炉缸温度场 |
5.1.4 炉役自保护期炉衬厚度 |
5.2 炉缸传热体系结构优化研究 |
5.2.1 炉缸炭砖传热体系优化 |
5.2.2 炉缸冷却结构优化 |
5.3 高炉炉缸长寿化设计与操作 |
5.3.1 炉缸结构设计和选型 |
5.3.2 高炉炉缸长寿操作技术 |
5.4 本章小结 |
第6章 武钢高炉冷却壁长寿优化研究 |
6.1 高炉冷却壁渣皮特性及行为研究 |
6.1.1 渣皮物相组成及微观结构研究 |
6.1.2 渣皮流动性分析 |
6.1.3 渣皮导热性能及挂渣能力分析 |
6.2 高炉冷却壁渣皮行为监测研究 |
6.2.1 渣皮厚度及热流强度计算 |
6.2.2 铜冷却壁渣皮监测系统研究 |
6.3 高炉冷却壁长寿技术对策研究 |
6.3.1 高炉冷却壁长寿设计优化 |
6.3.2 高炉冷却壁操作优化 |
6.3.3 高炉冷却壁渣皮厚度管控技术 |
6.4 本章小结 |
第7章 结论与展望 |
7.1 结论 |
7.2 展望 |
本论文主要创新点 |
致谢 |
参考文献 |
附录1 攻读博士学位期间取得的科研成果 |
附录2 攻读博士学位期间参加的科研项目 |
(2)武钢8号高炉投产10年冷却壁零破损总结(论文提纲范文)
1 武钢大型高炉冷却壁破损调查的经验 |
1.1 武钢大型高炉的冷却璧结构 |
1.2 武钢大型高炉冷却壁破损调查的经验 |
1.2.1 原武钢大型高炉冷却材质设计存在缺陷 |
1.2.2 负荷管理缺陷 |
1.2.3 操作模式缺陷 |
2 武钢8号高炉的冷却材质说明 |
3 武钢8号高炉的锌负荷的管理 |
3.1 减少入炉锌负荷 |
3.2 采取有力措施排锌 |
4 武钢8号高炉的操作制度 |
5 结语 |
(3)长寿高炉炉缸炉底影响因素研究(论文提纲范文)
致谢 |
摘要 |
Abstract |
1 引言 |
2 文献综述 |
2.1 世界炼铁工业概述 |
2.1.1 古代和炼铁的起源及世界钢铁中心 |
2.1.2 高炉巨型化发展概况 |
2.1.3 高炉长寿发展概况 |
2.2 高炉炉缸侧壁高温点和烧穿位置 |
2.3 炉缸炉底侵蚀原因 |
2.3.1 铁水环流 |
2.3.2 死铁层深度 |
2.3.3 砌筑结构 |
2.3.4 碱金属和锌侵蚀 |
2.3.5 炭砖脆化层 |
2.4 高炉炉缸死料柱 |
2.4.1 死料柱作用和更新周期 |
2.4.2 死料柱焦炭微观形貌及成分研究 |
2.4.3 死料柱焦炭粒度分布研究 |
2.4.4 死料柱空隙度分布研究 |
2.5 高炉炉缸炭砖保护层研究 |
2.5.1 富铁层 |
2.5.2 富高炉渣层 |
2.5.3 富石墨碳层 |
2.5.4 富钛层 |
2.6 炭砖抗渣铁和碱金属侵蚀性能检测方法 |
2.7 研究意义 |
2.8 研究内容和研究方法 |
3 炉缸死料柱焦炭研究 |
3.1 炉缸焦炭取样过程和分析方法介绍 |
3.2 死料柱焦炭结构和成分研究 |
3.2.1 BF A入炉焦炭成分和微观结构研究 |
3.2.2 BF A死料柱焦炭成分和微观结构研究 |
3.2.3 BF B死料柱焦炭成分和微观结构研究 |
3.2.4 BF A死料柱焦炭石墨化研究 |
3.2.5 死料柱无机矿物质含量变化研究 |
3.2.6 死料柱焦炭石墨化和无机矿物质转变对高炉影响研究 |
3.3 死料柱焦炭粒径分布研究 |
3.3.1 BF A死料柱焦炭粒度分布研究 |
3.3.2 BF B死料柱焦炭粒度分布研究 |
3.3.3 BF A死料柱焦炭强度研究 |
3.4 死料柱空隙度分布研究 |
3.5 本章小结 |
4 高炉铁口日常维护制度下炉缸铁水流场模拟 |
4.1 物理模型和数学模型 |
4.1.1 数学模型的简化 |
4.1.2 物理模型 |
4.1.3 数学模型和边界条件 |
4.1.4 网格的划分 |
4.2 铁口深度对炉缸铁水流动的影响 |
4.2.1 死料柱沉坐 |
4.2.2 死料柱浮起 |
4.2.3 生产实践实例分析 |
4.3 泥包大小对炉缸铁水流动的影响 |
4.3.1 死料柱沉坐 |
4.3.2 死料柱浮起 |
4.4 铁口倾角对炉缸铁水流动的影响 |
4.4.1 死料柱沉坐 |
4.4.2 死料柱浮起 |
4.5 双铁口夹角对炉缸铁水流动的影响 |
4.5.1 死料柱沉坐 |
4.5.2 死料柱浮起 |
4.6 模型验证 |
4.7 本章小结 |
5 高炉特定炉缸状态下的铁水流场模拟 |
5.1 死料柱浮起高度对炉缸铁水流动的影响 |
5.2 死料柱中心透液性对炉缸铁水流动的影响 |
5.2.1 死料柱沉坐 |
5.2.2 死料柱浮起 |
5.3 炉底温度降低对炉缸铁水流动的影响 |
5.3.1 死料柱沉坐 |
5.3.2 死料柱浮起 |
5.4 本章小结 |
6 炉缸炭砖脆化层和保护层研究 |
6.1 炉缸残余炭砖和保护层取样位置介绍 |
6.2 炉缸炉底炭砖剩余厚度调研 |
6.3 炉缸炭砖结构及成分和理化性能研究 |
6.3.1 原始SGL炭砖微观形貌 |
6.3.2 用后第9层SGL炭砖热面微观形貌 |
6.3.3 用后第11层SGL炭砖热面微观形貌 |
6.3.4 用后第12层SGL炭砖热面微观形貌 |
6.3.5 用后第9层SGL炭砖理化性能分析 |
6.4 炉缸炭砖脆化层形成机理研究 |
6.5 炉缸炭砖保护层成分及微观结构研究 |
6.5.1 用后第3层武彭炭砖热面保护层微观形貌 |
6.5.2 用后第4层SGL炭砖热面保护层微观形貌 |
6.5.3 用后第9层SGL炭砖热面保护层微观形貌 |
6.5.4 炉底陶瓷垫热面微观形貌 |
6.6 炉缸炭砖保护层形成机理研究 |
6.7 本章小结 |
7 炭砖抗渣铁和碱金属及锌侵蚀设备的开发 |
7.1 实验设备介绍 |
7.2 实验步骤 |
7.3 抗铁水侵蚀实验结果 |
7.4 抗高炉渣侵蚀实验结果 |
7.5 抗碱金属和锌侵蚀实验结果 |
7.6 炭砖内部温度变化 |
7.7 本章小结 |
8 结论与工作展望 |
8.1 结论 |
8.2 创新点 |
8.3 工作展望 |
参考文献 |
作者简历及在学研究成果 |
学位论文数据集 |
(4)国内某1800m3高炉炉缸侵蚀行为与机理研究(论文提纲范文)
摘要 |
abstract |
1 绪论 |
1.1 国内外高炉长寿技术现状 |
1.1.1 国外高炉长寿技术现状 |
1.1.2 国内高炉长寿技术现状 |
1.2 高炉炉缸侵蚀的理论分析 |
1.2.1 有害金属侵蚀 |
1.2.2 炉缸结构设计 |
1.2.3 死铁层深度与铁水冲刷溶蚀 |
1.2.4 炉缸热流强度与冷却强度 |
1.2.5 炉缸环裂 |
1.3 高炉炉缸维护 |
1.3.1 炉缸状态监控 |
1.3.2 护炉措施 |
1.3.3 操作制度 |
1.4 研究背景与研究内容 |
1.4.1 研究背景 |
1.4.2 研究内容 |
2 高炉炉役评价 |
2.1 炉缸炉底结构 |
2.2 炉缸炉底耐火材料参数 |
2.3 炉缸冷却设备及系统 |
2.4 热风炉系统 |
2.5 炉役期生产及检修概况 |
2.6 本章小结 |
3 高炉炉缸的侵蚀行为 |
3.1 炉缸侵蚀炉型与形貌分析 |
3.1.1 炉缸侵蚀炉型 |
3.1.2 炉缸砖衬侵蚀形貌 |
3.1.3 炉底陶瓷垫侵蚀形貌 |
3.2 碳砖残余厚度计算与分析 |
3.2.1 炉缸碳砖侵蚀厚度计算 |
3.2.2 计算结果与分析 |
3.3 炉役末期热电偶温度分析 |
3.3.1 热电偶温度变化趋势 |
3.3.2 铁水物理热、Si含量与Mn含量变化趋势 |
3.4 本章小结 |
4 高炉炉缸砖衬微观侵蚀分析 |
4.1 炉缸砖衬侵蚀特征 |
4.1.1 炉缸碳砖侵蚀特征 |
4.1.2 炉底陶瓷垫侵蚀特征 |
4.2 炉缸砖衬侵蚀微观分析 |
4.2.1 碳砖侵蚀微观分析 |
4.2.2 陶瓷垫侵蚀微观分析 |
4.3 炉缸粘结层微观分析 |
4.3.1 炉缸粘结层形貌 |
4.3.2 炉缸粘结层微观分析 |
4.4 本章小结 |
5 炉缸有害元素分布与焦炭质量分析 |
5.1 有害元素空间分布 |
5.1.1 纵向分布 |
5.1.2 横向分布 |
5.2 焦炭质量分析 |
5.2.1 工业分析 |
5.2.2 焦炭微观形貌分析 |
5.2.3 焦炭灰分成分分析 |
5.3 本章小结 |
6 结论 |
参考文献 |
致谢 |
附录 攻读研究生期间主要发表的论文情况 |
(5)死料柱对铁水流动状况影响的数值模拟(论文提纲范文)
摘要 |
abstract |
引言 |
第1章 文献综述 |
1.1 高炉大型化和长寿化现状 |
1.1.1 高炉大型化现状 |
1.1.2 高炉长寿现状 |
1.2 影响高炉长寿的主要因素及相应措施 |
1.2.1 高炉炉身下部侵蚀分析 |
1.2.2 高炉炉缸和炉底侵蚀分析 |
1.2.3 延长高炉寿命的措施 |
1.3 对高炉死料柱的认识 |
1.3.1 死料柱的形状 |
1.3.2 死料柱的形成及原因 |
1.3.3 死料柱的作用 |
1.3.4 降低死料柱负作用的措施 |
1.4 炉缸死料柱受力分析 |
1.4.1 保证死料柱浮起的最小死铁层深度 |
1.4.2 一般情况下死料柱浮起高度 |
1.5 炉缸铁水流动与侵蚀的研究现状 |
1.6 课题研究背景 |
1.7 课题研究目的 |
1.8 课题研究内容 |
第2章 死料柱对铁水流动状况影响的数值模拟模型建立 |
2.1 主要模拟工具FLUENT简介 |
2.2 数学模型的建立 |
2.2.1 炉缸尺寸及主要参数 |
2.2.2 数学模型假设条件 |
2.2.3 模拟计算的边界条件 |
2.2.4 炉缸内铁水流动模型控制方程 |
2.2.5 模拟方法 |
2.2.6 炉缸铁水流动模型网格划分 |
2.2.7 模型在FLUENT软件中求解过程 |
第3章 模拟结果分析与讨论 |
3.1 死料柱浮起高度对铁水流动过程的影响 |
3.1.1 死料柱浮起高度对炉缸铁水流动状态的影响 |
3.1.2 死料柱浮起高度对炉缸铁水流速的影响 |
3.1.3 死料柱浮起高度对炉底剪切应力的影响 |
3.1.4 死料柱浮起高度对炉缸侧壁剪切应力的影响 |
3.2 死料柱孔隙度对铁水流动过程的影响 |
3.2.1 死料柱孔隙度对炉缸铁水流动状态的影响 |
3.2.2 死料柱孔隙度对炉缸铁水流速的影响 |
3.2.3 死料柱孔隙度对炉底剪切应力的影响 |
3.2.4 死料柱孔隙度对炉缸侧壁剪切应力的影响 |
3.3 出铁口流量对铁水流动过程的影响 |
3.3.1 出铁口流量对炉缸铁水流动状态的影响 |
3.3.2 出铁口流量对炉缸铁水流速的影响 |
3.3.3 出铁口流量对炉底剪切应力的影响 |
3.3.4 出铁口流量对炉缸侧壁剪切应力的影响 |
3.4 小结 |
结论 |
参考文献 |
致谢 |
导师简介 |
作者简介 |
学位论文数据集 |
(6)基于边界元法的高炉炉缸炉底侵蚀模型的研究与应用(论文提纲范文)
摘要 |
Abstract |
第一章 绪论 |
1.1 引言 |
1.2 高炉长寿 |
1.2.1 高炉一代寿命的关键部位 |
1.2.2 高炉长寿的影响因素 |
1.2.3 高炉炉缸炉底侵蚀的原因 |
1.3 国内外发展水平 |
1.3.1 国内外高炉寿命的状况 |
1.3.2 国内外研究现状及分析 |
1.4 课题研究内容和意义 |
第二章 边界元基础 |
2.1 边界元法概述 |
2.1.1 边界元发展历程 |
2.1.2 边界元法的基本理论 |
2.2 加权余量法 |
2.3 基本解 |
2.3.1 δ函数 |
2.3.2 拉普拉斯方程的基本解 |
2.4 本章小结 |
第三章 高炉炉缸炉底数学模型 |
3.1 传热学理论基础 |
3.1.1 导热基本定律 |
3.1.2 导热系数λ |
3.1.3 导热微分方程 |
3.1.4 导热微分方程的单值性条件 |
3.2 炉缸炉底侵蚀模型的建立 |
3.2.1 武钢4号高炉炉底情况 |
3.2.2 数学模型的建立 |
3.3 边界元法对方程的离散及处理 |
3.3.1 方程的离散 |
3.3.2 矩阵H和G的计算 |
3.4 超松弛迭代法求解线性方程组 |
3.5 1150℃侵蚀线的拟合 |
3.5.1 1150℃侵蚀线控制点的确定 |
3.5.2 样条曲线拟合1150℃侵蚀线 |
3.6 本章小结 |
第四章 计算结果及分析 |
4.1 1150℃侵蚀线的确定及相关误差分析 |
4.2 炉缸炉底侵蚀情况讨论 |
4.3 本章小结 |
第五章 结论与展望 |
5.1 结论 |
5.2 展望 |
致谢 |
参考文献 |
附录1 攻读硕士学位期间发表的论文 |
附录2 部分主程序代码 |
附件 |
(7)武钢5号高炉长寿生产实践(论文提纲范文)
1 长寿设计 |
1.1 内型设计 |
1.2 冷却壁及耐材的选择 |
1.3 高炉冷却系统 |
2 高炉操作与维护 |
2.1 重视炉型管理 |
2.2 改善原燃料质量 |
2.3 调整风口布局 |
2.4 调整装料制度 |
2.5 优化炉前工作 |
3 结语 |
(8)宝钢3号高炉长寿技术的研究(论文提纲范文)
摘要 |
Abstract |
第1章 绪论 |
1.1 高炉炼铁概述 |
1.1.1 我国现代高炉炼铁技术发展概况 |
1.1.2 世界大型高炉概况 |
1.1.3 高炉炼铁原理及工艺概况 |
1.2 高炉长寿概述 |
1.2.1 国内外高炉长寿概况 |
1.2.2 高炉长寿限制性环节 |
1.2.3 高炉炉缸烧穿事故 |
1.3 课题提出与研究内容 |
1.3.1 课题提出 |
1.3.2 研究内容 |
第2章 宝钢3号高炉长寿设计技术 |
2.1 高炉炉型设计 |
2.1.1 合适的高径比(Hu/D)及死铁层深度 |
2.1.2 合理的炉腹角(A)及炉身角(B) |
2.2 高炉炉衬设计 |
2.2.1 炉缸、炉底耐材设计 |
2.2.2 风口及炉腹 |
2.2.3 炉腰及炉身 |
2.3 高炉冷却系统设计 |
2.3.1 冷却设备形式 |
2.3.2 冷却系统类型 |
2.4 高炉检测系统设计 |
2.4.1 冷却系统的检测 |
2.4.2 炉体炉缸温度的检测 |
2.5 宝钢3号高炉设计的改进方向 |
2.6 小结 |
第3章 宝钢3号高炉制造及施工技术 |
3.1 宝钢3号高炉冷却壁制造技术 |
3.1.1 原料化学成分控制 |
3.1.2 球化剂的选择 |
3.1.3 冷却水管材质及防渗碳处理 |
3.2 宝钢3号高炉炉缸耐材施工技术 |
3.2.1 炉缸炭砖砌筑标准 |
3.2.2 宝钢3号高炉炉缸炭砖施工技术 |
3.2.3 砌筑质量对炉缸长寿的影响 |
3.3 制造及施工的改进方向 |
3.4 小结 |
第4章 宝钢3号高炉稳定操作技术 |
4.1 原燃料质量管理 |
4.1.1 提高原燃料质量,优化炉料结构 |
4.1.2 严格控制入炉碱金属和锌负荷 |
4.2 优化煤气流分布,确保炉况稳定 |
4.2.1 宝钢3号高炉操作难点 |
4.2.2 优化装料制度,保证煤气流分布合理 |
4.2.3 优化操业参数,控制炉体热负荷稳定合适 |
4.2.4 优化送风制度,控制适宜的鼓风动能 |
4.2.5 调整效果 |
4.3 精心操作,趋势管理,确保炉温稳定充沛 |
4.3.1 炉温管理标准及调节手段 |
4.3.2 炉温趋势管理 |
4.4 优化炉渣成分 |
4.5 强化设备管理,降低休风率 |
4.6 宝钢3号高炉操作实绩 |
4.7 小结 |
第5章 宝钢3号高炉炉身维护技术 |
5.1 宝钢3号高炉冷却壁破损状况及原因分析 |
5.1.1 冷却壁破损状况 |
5.1.2 冷却壁破损的原因分析 |
5.2 宝钢3号高炉冷却系统优化 |
5.2.1 提高水量水压,提高冷却强度 |
5.2.2 增设脱气罐,提高脱气功能 |
5.2.3 优化水处理技术、改善水质 |
5.3 炉身长寿维护技术 |
5.3.1 安装微型冷却器 |
5.3.2 硬质压入及人工造壁 |
5.3.3 整体更换冷却壁 |
5.3.4 破损冷却壁的及时发现和分离 |
5.4 小结 |
第6章 宝钢3号高炉炉缸维护技术 |
6.1 炉缸长寿维护操作 |
6.1.1 合理炉缸冷却强度控制 |
6.1.2 合理的出渣铁制度及铁口状态维护 |
6.1.3 炉缸活跃性控制 |
6.2 炉缸状态监控 |
6.2.1 加装炉缸电偶 |
6.2.2 水系统安装高精度电阻 |
6.2.3 完善炉缸炉底侵蚀模型 |
6.2.4 建立炉缸炉底残厚计算模型 |
6.3 炉缸压浆 |
6.3.1 大套下压浆 |
6.3.2 铁口压浆 |
6.3.3 炉缸压浆 |
6.4 小结 |
第7章 结论 |
参考文献 |
致谢 |
攻读学位期间发表成果 |
作者简介 |
四、武钢5号高炉长寿技术(论文参考文献)
- [1]高炉炉衬与冷却壁损毁机理及长寿化研究[D]. 卢正东. 武汉科技大学, 2021(01)
- [2]武钢8号高炉投产10年冷却壁零破损总结[J]. 曾伟涛. 冶金与材料, 2020(01)
- [3]长寿高炉炉缸炉底影响因素研究[D]. 牛群. 北京科技大学, 2020(06)
- [4]国内某1800m3高炉炉缸侵蚀行为与机理研究[D]. 秦偲杰. 西安建筑科技大学, 2019(06)
- [5]死料柱对铁水流动状况影响的数值模拟[D]. 梁为秋. 华北理工大学, 2019(01)
- [6]基于边界元法的高炉炉缸炉底侵蚀模型的研究与应用[D]. 张权. 武汉科技大学, 2017(01)
- [7]武钢5号高炉长寿生产实践[J]. 章铭明,王潞明. 武钢技术, 2015(06)
- [8]宝钢3号高炉长寿技术的研究[D]. 梁利生. 东北大学, 2012(07)
- [9]关于我国炼铁高炉的长寿问题[A]. 张寿荣. 2012年全国炼铁生产技术会议暨炼铁学术年会文集(上), 2012
- [10]武钢炼铁“十一五”技术装备进步[A]. 陆隆文,杨佳龙. 科技引领产业、支撑跨越发展——第六届湖北科技论坛论文集萃, 2011